Skip to content
🤔prompts chat🧠
🔍
question:Consider the following function [g(x)=(alpha+|x|)^{2}e^{(5|x|)^{2}}]**i)** Find all the values of alpha for which g(x) is continuous for all xinmathbb{R} **ii)**Find all the values of alpha for which g(x) is differentiable for all xinmathbb{R} .

answer:Given the function: [ g(x) = (alpha + |x|)^2 e^{(5 - |x|)^2} ] We need to find: i) All values of (alpha) for which (g(x)) is continuous for all (x in mathbb{R}). ii) All values of (alpha) for which (g(x)) is differentiable for all (x in mathbb{R}). First, let's rewrite (g(x)) in piecewise form: [ g(x) = begin{cases} (alpha + x)^2 e^{(5 - x)^2} & text{if } x > 0 (alpha - x)^2 e^{(5 + x)^2} & text{if } x < 0 alpha^2 e^{5^2} & text{if } x = 0 end{cases} ] # Part i) Continuity To check the continuity of (g(x)) at (x = 0), we need to ensure that: [ lim_{x to 0^+} g(x) = g(0) quad text{and} quad lim_{x to 0^-} g(x) = g(0) ] 1. **Right-hand limit**: [ lim_{x to 0^+} g(x) = lim_{x to 0^+} (alpha + x)^2 e^{(5 - x)^2} ] As (x to 0^+): [ (alpha + x)^2 to alpha^2 ] [ e^{(5 - x)^2} to e^{5^2} ] Therefore: [ lim_{x to 0^+} g(x) = alpha^2 e^{5^2} ] 2. **Left-hand limit**: [ lim_{x to 0^-} g(x) = lim_{x to 0^-} (alpha - x)^2 e^{(5 + x)^2} ] As (x to 0^-): [ (alpha - x)^2 to alpha^2 ] [ e^{(5 + x)^2} to e^{5^2} ] Therefore: [ lim_{x to 0^-} g(x) = alpha^2 e^{5^2} ] 3. **Value at (x = 0)**: [ g(0) = alpha^2 e^{5^2} ] Since: [ lim_{x to 0^+} g(x) = lim_{x to 0^-} g(x) = g(0) ] (g(x)) is continuous at (x = 0) for all (alpha in mathbb{R}). # Part ii) Differentiability To check the differentiability of (g(x)) at (x = 0), we need to ensure that: [ g'(0^+) = g'(0^-) ] 1. **Right-hand derivative**: [ g'(x) = frac{d}{dx} left[ (alpha + x)^2 e^{(5 - x)^2} right] ] Using the product rule: [ g'(x) = 2(alpha + x) e^{(5 - x)^2} + (alpha + x)^2 cdot frac{d}{dx} e^{(5 - x)^2} ] [ frac{d}{dx} e^{(5 - x)^2} = e^{(5 - x)^2} cdot (-2(5 - x)) = -2(5 - x) e^{(5 - x)^2} ] Therefore: [ g'(x) = 2(alpha + x) e^{(5 - x)^2} - 2(alpha + x)^2 (5 - x) e^{(5 - x)^2} ] As (x to 0^+): [ g'(0^+) = 2alpha e^{5^2} - 10alpha^2 e^{5^2} ] 2. **Left-hand derivative**: [ g'(x) = frac{d}{dx} left[ (alpha - x)^2 e^{(5 + x)^2} right] ] Using the product rule: [ g'(x) = 2(alpha - x) e^{(5 + x)^2} + (alpha - x)^2 cdot frac{d}{dx} e^{(5 + x)^2} ] [ frac{d}{dx} e^{(5 + x)^2} = e^{(5 + x)^2} cdot 2(5 + x) = 2(5 + x) e^{(5 + x)^2} ] Therefore: [ g'(x) = 2(alpha - x) e^{(5 + x)^2} + 2(alpha - x)^2 (5 + x) e^{(5 + x)^2} ] As (x to 0^-): [ g'(0^-) = 2alpha e^{5^2} + 10alpha^2 e^{5^2} ] For (g'(0)) to exist: [ g'(0^+) = g'(0^-) ] [ 2alpha e^{5^2} - 10alpha^2 e^{5^2} = 2alpha e^{5^2} + 10alpha^2 e^{5^2} ] [ -10alpha^2 e^{5^2} = 10alpha^2 e^{5^2} ] [ -10alpha^2 = 10alpha^2 ] [ -20alpha^2 = 0 ] [ alpha = 0 ] Therefore, (g(x)) is differentiable for all (x in mathbb{R}) if and only if (alpha = 0). The final answer is ( boxed{ alpha in mathbb{R} } ) for continuity and (alpha = 0) for differentiability.

question:Petya wrote down a sequence of ten natural numbers as follows: he wrote the first two numbers randomly, and each subsequent number, starting from the third, was equal to the sum of the two preceding numbers. Find the fourth number if the seventh number is 42 and the ninth number is 110.

answer:Let's denote the sequence of ten natural numbers as (a_1, a_2, a_3, ldots, a_{10}). According to the problem, - (a_3 = a_1 + a_2) - (a_4 = a_2 + a_3) - (a_5 = a_3 + a_4) - ... - (a_n = a_{n-1} + a_{n-2}) for (n geq 3). It is given: - (a_7 = 42) - (a_9 = 110) 1. **Find (a_8):** [ a_8 = a_9 - a_7 = 110 - 42 = 68 ] 2. **Find (a_6):** [ a_6 = a_8 - a_7 = 68 - 42 = 26 ] 3. **Find (a_5):** [ a_5 = a_7 - a_6 = 42 - 26 = 16 ] 4. **Find (a_4):** [ a_4 = a_6 - a_5 = 26 - 16 = 10 ] Thus, the fourth number in the sequence is (10). # Conclusion: [ boxed{10} ]

question:{(frac{sqrt{3}}{2}+frac{i}{2})}^{2023}=left( right) A: frac{sqrt{3}}{2}+frac{i}{2} B: frac{sqrt{3}}{2}frac{i}{2} C: frac{sqrt{3}}{2}+frac{i}{2} D: frac{sqrt{3}}{2}frac{i}{2}

answer:To solve the problem {(frac{sqrt{3}}{2}+frac{i}{2})}^{2023}, we first simplify the expression inside the parentheses to understand its behavior when raised to a power. Step 1: Square the expression to find a pattern. [ begin{align*} left(frac{sqrt{3}}{2}+frac{i}{2}right)^2 &= left(frac{sqrt{3}}{2}right)^2 + 2cdotfrac{sqrt{3}}{2}cdotfrac{i}{2} + left(frac{i}{2}right)^2 &= frac{3}{4} + frac{sqrt{3}}{2}i - frac{1}{4} &= frac{2}{4} + frac{sqrt{3}}{2}i &= frac{1}{2} + frac{sqrt{3}}{2}i. end{align*} ] Step 2: Multiply by i to simplify further. [ begin{align*} ileft(frac{sqrt{3}}{2}+frac{i}{2}right)^2 &= ileft(frac{1}{2} + frac{sqrt{3}}{2}iright) &= frac{i}{2} - frac{sqrt{3}}{2} &= -frac{sqrt{3}}{2} + frac{i}{2}. end{align*} ] This shows that left(frac{sqrt{3}}{2}+frac{i}{2}right)^2 = frac{1}{i}left(-frac{sqrt{3}}{2} + frac{i}{2}right). Step 3: Calculate the cube of the original expression. [ begin{align*} left(frac{sqrt{3}}{2}+frac{i}{2}right)^3 &= frac{1}{i}left(-frac{sqrt{3}}{2} + frac{i}{2}right)left(frac{sqrt{3}}{2}+frac{i}{2}right) &= frac{1}{i}left(-frac{3}{4} - frac{1}{4}right) &= -frac{1}{i}. end{align*} ] Step 4: Use the cube to find the 2023rd power. [ begin{align*} left(frac{sqrt{3}}{2}+frac{i}{2}right)^{2023} &= left[left(frac{sqrt{3}}{2}+frac{i}{2}right)^3right]^{674} times left(frac{sqrt{3}}{2}+frac{i}{2}right) &= left(-frac{1}{i}right)^{674} times left(frac{sqrt{3}}{2}+frac{i}{2}right) &= left[left(frac{1}{-i}right)^2right]^{337} times left(frac{sqrt{3}}{2}+frac{i}{2}right) &= (-1)^{337} times left(frac{sqrt{3}}{2}+frac{i}{2}right) &= -left(frac{sqrt{3}}{2}+frac{i}{2}right) &= -frac{sqrt{3}}{2}-frac{i}{2}. end{align*} ] Therefore, the correct answer is boxed{text{B: } -frac{sqrt{3}}{2}-frac{i}{2}}.

question:a right triangle triangle ABC, where AB = 6, BC = 8, and angle B = 90^circ, find the length of the segment from vertex B to the incenter I. Express your results in simplest form xsqrt{y}.

answer:1. **Identify Sides and Hypotenuse:** Since angle B = 90^circ, AB and BC are the legs, AC (hypotenuse) can be calculated using AC = sqrt{AB^2 + BC^2} = sqrt{6^2 + 8^2} = sqrt{36 + 64} = sqrt{100} = 10. 2. **Calculate the Inradius r:** The inradius r of a right triangle is given by [ r = frac{A}{s} ] where A is the area of the triangle and s is the semi-perimeter. The area A = frac{1}{2}ab = frac{1}{2} times 6 times 8 = 24 and the semi-perimeter s = frac{a+b+c}{2} = frac{6+8+10}{2} = 12. Thus, [ r = frac{24}{12} = 2 ] 3. **Determine the Length of Segment BI:** In a right triangle, the incenter is always located at r distance vertically upward from the hypotenuse and horizontally from the right-angled corner. Thus we must determine the length of BI. Due to the formation of an isosceles right triangle triangle BID (where D is the point where the inradius meets AC), this length is rsqrt{2} = 2sqrt{2}. Hence, BI = boxed{2sqrt{2}}.

Released under the Turing License.

has loaded