Skip to content
🤔prompts chat🧠
🔍
question:原始的loss设置:from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss 现在loss设置:from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss

answer:我注意到您两次贴出的代码几乎完全相同,似乎您想对比原始的损失设置和您所计划的修改。然而,在您提出的修改中,看起来并没有包含任何新的代码或对原始损失设置的更改。如果您的目标是讨论或询问关于损失函数的设定或如何进行改进,请确保提供具体的修改或详细说明您的疑问。 如果您的意图是询问关于如何改进损失函数的设置,以下是一些普遍的建议: 1. **结合多任务学习**:如果您的模型有多个输出,考虑为每个输出设置不同的损失函数,并且根据任务的难度或重要性来调整各个损失函数的权重。 2. **使用动态权重**:在训练过程中动态调整损失项权重,这可以基于每个损失对模型在验证集上性能的贡献度来实现。例如,可以使用“损失加权平均”策略,通过损失项对模型改进的贡献大小来动态地调整它们的权重。 3. **引入正则项**:考虑在损失函数中加入正则项,如L1或L2正则,以避免模型过拟合。这尤其有用于模型参数众多时。 4. **使用自定义损失函数**:根据具体的任务需求,可能需要设计自定义的损失函数。例如,如果你关注的是模型输出的排名,可以考虑使用排序损失(如pairwise loss或listwise loss)。 5. **不同阶段使用不同损失设置**:在模型训练的不同阶段使用不同的损失函数或权重配置也是一个选择。例如,初始阶段使用更重的正则化来防止过拟合,后面逐渐减小正则化权重以允许模型对数据进行更深入的拟合。 6. **实验和验证**:无论你如何调整损失函数,都应该通过实验在验证集上验证其效果。同时,记录每次实验的设置和结果,以便找到最优配置。 希望这些建议能对您有所帮助!如果您有具体的想法或者代码修改部分,请提供更详细的信息以便进一步讨论。

question:当前的训练配置中:DATA: MAX_SAMPLE_INTERVAL: 100 MEAN: - 0.485 - 0.456 - 0.406 SEARCH: CENTER_JITTER: 3 FACTOR: 4.0 SCALE_JITTER: 0.25 SIZE: 256 NUMBER: 1 STD: - 0.229 - 0.224 - 0.225 TEMPLATE: CENTER_JITTER: 0 FACTOR: 2.0 SCALE_JITTER: 0 SIZE: 128 TRAIN: DATASETS_NAME: - COESOT DATASETS_RATIO: - 1 SAMPLE_PER_EPOCH: 60000 VAL: DATASETS_NAME: - COESOT_VAL DATASETS_RATIO: - 1 SAMPLE_PER_EPOCH: 5000 MODEL: PRETRAIN_FILE: "mae_pretrain_vit_base.pth" EXTRA_MERGER: False RETURN_INTER: False BACKBONE: TYPE: vit_base_patch16_224_ce STRIDE: 16 CE_LOC: [3, 6, 9] CE_KEEP_RATIO: [1, 1, 1] CE_TEMPLATE_RANGE: 'CTR_POINT' HEAD: TYPE: CENTER NUM_CHANNELS: 256 TRAIN: BACKBONE_MULTIPLIER: 0.1 DROP_PATH_RATE: 0.1 CE_START_EPOCH: 0 # candidate elimination start epoch 20 CE_WARM_EPOCH: 0 # candidate elimination warm up epoch 50 BATCH_SIZE: 32 EPOCH: 50 GIOU_WEIGHT: 1 # 2.0 L1_WEIGHT: 14 # 5.0 FOCAL_WEIGHT: 1.0 # 1.5 GRAD_CLIP_NORM: 0.1 LR: 0.0001 # 1e-4 LR_DROP_EPOCH: 40 # 原始是40 NUM_WORKER: 4 OPTIMIZER: ADAMW PRINT_INTERVAL: 50 SCHEDULER: TYPE: step DECAY_RATE: 0.1 # TYPE: Mstep # MILESTONES: [40, 60] # GAMMA: 0.1 VAL_EPOCH_INTERVAL: 2 WEIGHT_DECAY: 0.0001 #0.0001 AMP: False TEST: EPOCH: 50 SEARCH_FACTOR: 4.0 SEARCH_SIZE: 256 TEMPLATE_FACTOR: 2.0 TEMPLATE_SIZE: 128 那么rank loss的系数设置合理吗?

answer:根据您提供的训练配置,`rank loss`的系数设置是否合理,取决于`rank loss`在整体损失函数中的作用以及您的特定目标。以下是一些考虑因素: 1. **损失权重平衡**:`GIOU_WEIGHT`、`L1_WEIGHT`和`FOCAL_WEIGHT`在您的配置中分别被设置为`1`、`14`和`1.0`。这说明L1损失被给予了相对较大的重视,这可能是因为位置精度对于您的任务非常关键。在这种情况下,`rank loss`的权重(例如是否采用`1.2`乘以`rank`和`rank_event`的总合)需要与这些已有的权重相平衡。如果`rank loss`和`rank_loss_event`主要是为了优化注意力机制的细节,而这对于整体性能的提升是次要的,则其系数不应太高,以免分散对主要损失项的优化焦点。 2. **任务相关性**:`rank loss`的作用是强化模型的注意力机制,如果这对于您的应用(例如,处理大量序列数据,需要模型集中注意力在关键帧或事件上)是至关重要的,那么给予它较高的权重可能是合理的。 3. **实验反馈**:最终,`rank loss`的权重应该基于实验反馈进行调整。开始时,您可以设置一个基本假设的权重,如`1.2`,然后根据模型在验证集上的性能表现调整。如果增加`rank loss`的权重能明显提高模型性能,那么保持或进一步调高权重是合适的;如果性能提高有限或者模型出现过拟合等问题,就需要适当降低权重。 4. **超参数调优**:考虑使用自动调参工具(如网格搜索、随机搜索、贝叶斯优化等)来寻找最优的`rank loss`权重,这样可以更系统地评估不同权重对模型性能的影响。 综上所述,无法直接断言您设置的`rank loss`的系数是否绝对合理,需要根据您的具体任务需求、模型结构以及通过大量实验来确定。实验迭代是寻找最佳设置的关键。

question:在from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) rank_loss_event = self.loss_rank_event(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) rank = rank_loss + rank_loss_event # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), 'Loss/rank': rank.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01) # 新增event分支的注意力loss正则化计算 def loss_rank_event(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn_event'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01)中,报错Restarting training from last epoch ... Finished training! Training crashed at epoch 1 Traceback for the error! Traceback (most recent call last): File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/trainers/base_trainer.py", line 85, in train self.train_epoch() File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/trainers/ltr_trainer.py", line 133, in train_epoch self.cycle_dataset(loader) File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/trainers/ltr_trainer.py", line 86, in cycle_dataset loss, stats = self.actor(data) File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/actors/ceutrack.py", line 34, in __call__ loss, status = self.compute_losses(out_dict, data) File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/actors/ceutrack.py", line 110, in compute_losses rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) File "/data2/local_userdata/heyuting/new_VOT/COESOT-main/CEUTrack/lib/train/../../lib/train/actors/ceutrack.py", line 185, in loss_rank attn = torch.cat([attn1, attn2],dim=1) RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 206 but got size 0 for tensor number 1 in the list. Restarting training from last epoch ... Finished training!

answer:错误信息表明在执行`torch.cat([attn1, attn2],dim=1)`时遇到了问题,具体是因为要拼接的两个张量在除了第二个维度(`dim=1`,即通道维度)之外的其他维度大小不匹配。此操作尝试在通道维度上拼接`attn1`和`attn2`,但它们在其他维度上的大小不一致,导致无法进行拼接操作。 # 解决方法 1. **核实张量维度**:首先需要确认`attn1`和`attn2`张量的具体大小,确保除了通道维度(通常是`dim=1`)外,其他维度的大小完全匹配。可以通过打印`attn1.shape`和`attn2.shape`来检查这一点。 2. **调整张量大小**:如果发现`attn1`和`attn2`在某些维度上大小不一致,需要根据具体需要调整它们的大小,以确保能在指定的维度上正确拼接。这可能涉及到调整形状、裁剪或填充等操作。根据所给代码和错误信息,并不能直接确定应该如何修改这些张量,因为具体的修改取决于您的模型架构和数据处理流程。 3. **检查拼接逻辑**:再次确认拼接的逻辑是否正确。从错误原因来看,问题出在两个张量的非通道维度上的大小不匹配。这可能是因为在处理过程(裁剪、采样等操作)中对张量进行了修改,造成了维度不匹配的情况。确保所有与`attn1`和`attn2`相关的操作不会破坏它们的尺寸一致性。 4. **采取条件分支**:如果`attn1`和`attn2`的大小不匹配是因为特定条件下的某些操作,您可以根据条件采取不同的逻辑分支,或在拼接前对张量进行必要的调整。 # 示例修复代码 这里没有具体的修复代码,因为需要基于您的模型结构和数据处理流程来确定如何调整。但是,您可以参考以下代码结构来检查和调整: ```python print("attn1 shape: ", attn1.shape) print("attn2 shape: ", attn2.shape) # 假设调整attn1和attn2的大小使其可以拼接 # 这里的调整操作依赖于实际情况 # 例如,如果是需要裁剪,那么可以使用attn1 = attn1[:, :, :min_size, :min_size] # 如果需要填充,可以使用F.pad # attn1 = torch.nn.functional.pad(attn1, (0, 0, 0, delta_h, 0, delta_w), 'constant', 0) # 成功调整后再次拼接 attn = torch.cat([attn1, attn2], dim=1) ``` 请记住,上述代码只是说明了处理的方向,具体操作需要您根据实际情况来决定。

question:打印之后:attn1.shape: torch.Size([1, 1, 206, 57]) attn2.shape: torch.Size([1, 1, 0, 263])

answer:错误信息和打印的形状信息表明,`attn2`的第三个维度(代表高度)为0,这意味着`attn2`是一个空的张量(在这个维度上没有数据)。这是导致拼接操作失败的直接原因,因为无法在空的维度上与其他张量进行拼接。 要解决这个问题,有几种可能的方法: # 方法1: 跳过空张量 如果`attn2`对于后续操作不是必需的,您可以编写条件语句来跳过空张量的拼接: ```python if attn2.size(2) > 0: # 检查attn2的高度是否大于0 attn = torch.cat([attn1, attn2], dim=3) # 如果attn2不为空,则在宽度维度拼接 else: attn = attn1 # 如果attn2为空,则只使用attn1 ``` # 方法2: 检查并解决attn2空张量的根本原因 `attn2`变为空张量可能是由于之前的操作错误或数据问题。您需要检查`attn2`生成过程中的逻辑,看看是哪一步导致了空张量的出现。可能的原因包括: - **选择或裁切逻辑错误**:检查生成`attn2`的代码,确认是否因为错误的索引、裁切范围或条件导致了空张量。 - **输入数据问题**:如果`attn2`依赖于输入数据,检查输入数据是否存在异常,如尺寸异常、错误的数据处理流程等。 # 方法3: 调整数据处理流程或模型架构 如果`attn2`空张量的出现是由于特定的模型设计或数据处理流程造成的,您可能需要重新审视该流程或架构。考虑是否可以通过调整模型结构或修改数据预处理步骤来避免这种情况。 # 示例:检查导致`attn2`为空的操作 假设`attn1`和`attn2`是通过对原始注意力矩阵`attn`进行操作而得到的,检查这些操作是否正确执行: ```python # 示例:假设有如下操作导致attn2为空 attn_original = ... # 原始注意力矩阵 attn1 = attn_original[:, :, :, :57] # 正确的裁切操作 attn2 = attn_original[:, :, :, 57:] # 可能导致空张量的操作 # 检查attn_original的形状,确认是否因为错误的范围选择导致attn2为空 print("attn_original shape: ", attn_original.shape) # 基于检查结果调整操作 ``` 综上所述,解决这一问题的关键是找到`attn2`变为空张量的根本原因,并根据实际情况选择合适的解决方案。

Released under the Turing License.

has loaded